
ill
PB96-148556

uns
Information is our business.

PARALLELIZING THE 0PS5 MATCHING ALGORITHM
IN QLISP

STANFORD UNIV., CA

OCT 91
19970410 066

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

Approved for public release;
Distribution Unlimited

BTTC qUMMT INSPECTED 1

October 1991 Report No. STAN-CS-91-1396

PB96-148556

Parallelizing the OPS5 Matching Algorithm in Qlisp

by

Daniel J. Scales

Department of Computer Science

Stanford University
Stanford, California 94305

REPRODUCED BY: NTtS
U-S. Department of Commerce

National Technical Information Service
Springfield, Virginia 22161

REPORT DOCUMENTATION PAGE Form Approved

OMB Ate. 0704-0188
p^ubtic rvporong, bunten for thn collection of Information n »|trmat»d to »vty»ot> 1 >»otjf^^fw^r^ftH.M<iü!^!T^^^^"^^^^^^^^^— . —-~ ...„„.-, „„. .„. w... vwxxuun vi miuraunwi n «nmaiM w imHf I hour oar rnoomc indudina th» urn» ««» -- „,, ■~^^^^^—

gatharmg and maintaining tha data nudad. and cornetctina and rcvi«wina thrcotlmrnBr, of,^«7^ J!zlI?L^L^!!l ^T""?? instructioni. Marching en

.. i^I ^v~"-~ """"'"j'v" ntn^mran OTVK«. Dirtciorat* tor Information OoaratfcMwirf «jjuüi. i:

to tTW^ertMarMgam^taf« Budget, »apwv^ Reduce Sf?20M3

REPORT DATE
October 1991

4. TITLE AND SUBTITLE

3. REPORT TYPE AND DATES COVERED

Parallelizing the 0PS5 Matching Algorithm in Qlisp

6. AUTHOR«)

Daniel J. Scales

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Computer Science Department
Stanford University
Stanford, CA 94305

5. FUNDING NUMBERS

9. SPONSORING/MONITORING AGENCY NAME(S) AND AOORESS(ES')"

DARPA
1400 Wilson Blvd.
Arlington, VA

11. SUPPLEMENTARY NOTES

8. PERFORMING ORGANIZATION
REPORT NUMBER

STAN-CS-91-1396

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION /AVAILABILITY STATEMENT

unlimited

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

In recent years, production systems have become a popular framework
within which to implement large-scale expert systems. Unfortunately,
production systems are often characterized by slow running times,
because of the large amount of matching that must be done during their
execution. For the production system language 0PS5, there is a highly
efficient matching algorithm known as the Rete algorithm which gives
a large speedup over a naive implementation of production systems. In
this paper, we describe our attempts to speed up 0PS5 even further by
parallelizing the Rete algorithm in Qlisp, a parallel Lisp language.
We give details on the Qlisp constructs we used to parallelize the
Rete algorithm and provide actual timing results on various 0PS5 rule
sets.

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

NSN: " =40-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

=20
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Parallelizing the 0PS5 Matching Algorithm in Qlisp

Daniel Scales

Department of Computer Science
Stanford University
Stanford, CA 94305

October 1991

Abstract

In recent years, production systems have become a popular framework within which
to implement large-scale expert systems. Unfortunately, production systems are often
characterized by slow running times, because of the large amount of matching that must
be done during their execution. For the production system language OPS5, there is a
highly efficient matching algorithm known as the Rete algorithm which gives a large
speedup over a naive implementation of production systems. In this paper, we describe
our attempts to speed up OPS5 even further by parallelizing the Rete algorithm in
Qlisp, a parallel Lisp language. We give details on the Qlisp constructs we used to
parallelize the Rete algorithm and provide actual timing results on various OPS5 rule
sets.

1 Introduction

In recent years, production (rule) systems have become a popular framework within which to
implement large-scale expert systems. They provide a means of organizing a large amount
of expert knowledge in the form of a collection of rules, each of which encodes a small
bit of expert knowledge about a situation. Such an organization, in which most of the
knowledge is stored declaratively in the form of many loosely connected rules (rather than,
for instance, procedurally in the control flow of a program), makes it easier to add knowledge
incrementally to an existing knowledge base, either by modifying existing rules or adding
new rules to the rule system.

Unfortunately, production systems can run quite slowly, because of the large amount of
matching needed to determine which particular rule applies at each stage in the execution
of the system. Hence, any method of speeding up the matching process of rule systems
is of great interest and utility. For a particular production system language, OPS5 [2],
there is a highly efficient matching algorithm known as the Rete algorithm. However,
even when this algorithm is used, a rule system with a fairly large number of rules may
run unacceptably slowly. In this paper, we investigate parallelizing the Rete algorithm
as a way to achieve greater execution speed for rule systems. In particular, we investigate
parallelizing a Common Lisp implementation of the the Rete algorithm via the Qlisp parallel

programming language. We base our work on the study by Gupta [6] of parallelism in the
Rete algorithm. Additionally, Okuno and Gupta. [10] have previously done some work
investigating the use of Qlisp to speed up OPS5. using a Qlisp simulator.

Gupta et al. [7] describes the results of parallelizing an implementation of the Rete
algorithm in C. Although a C implementation of the Rete algorithm is much faster than
a Lisp implementation, it is interesting to speed up a Lisp implementation, because AI
applications that use production systems are often built on top of Lisp. Additionally, the
Rete algorithm provides an interesting "real-world" test case for Qlisp. since it is different in
a number of ways, as will be described below, from the typical "toy'* benchmark programs
that are often used to test parallel Lisps. >

2 OPS5

A production system consists of a collection of rules called productions and a working
memory. Each production is specified by a set of conditions and a set of actions, such that
the production is eligible to execute its actions ("fire*') when its conditions are satisfied.
Working memory is a global database containing data elements which are referenced by
the conditions of the productions and created, modified, and removed by the actions of the
productions. A production system interpreter executes a set of productions by repeatedly
executing a cycle which consists of the following phases:

• match phase - determine all productions whose conditions are satisfied by' the current
contents of working memory.

• conflict resolution phase - choose a subset of the productions whose conditions are
satisfied.

• action phase - execute the actions of those productions, possibly changing the contents
of working memory in the process.

The set of all productions whose conditions are currently satisfied is called the conflict set.
Thus, the second phase above consists of determining which of the productions currently in
the conflict set should be executed.

OPS5 is a production system language in which all working-memory elements (wme's)
are vectors of symbols (or numbers). The individual components of a wme are referred
to as the fields of the wme. Typically, the value of the first field of a wme is interpreted
as the class of the wme and the value of the remaining fields as attributes of the wme.
OPS5 allows the user to assign symbolic names to the fields of wme's of each class. Such
attribute names are indicated by a preceding up-arrow. When an attribute name appears
in a condition or wme, it indicates that the following value or pattern refers to the field
corresponding to that attribute. For example, the notation:

(goal "status active "type holds 'object ladder)

indicates a wme with class name "goal'", a value of "active" for the "status" field, a value
of "holds" for the "type" field, and a value of "ladder" for the "object" field.

A typical OPS5 production is as follows:

(p mb2
(goal "status active "type holds "object <w>)
(object "name <w> "at <p> "on ceiling)
(object "name ladder "at <p>)

-->
(make goal "status active "type on "object ladder)

)

The symbols <w> and <p> are names of 0PS5 variables. A variable in a condition matches
any value of the corresponding field. However, the variable is bound to the value it matches,
and any other occurrence of the same variable within the conditions of the production
matches only that value. Eachwme that matches the condition is said to be an instantiation
of that condition. For example, a wme is an instantiation of the first condition of the above
production if and only if it has a class name of "goal", a value of '"active" for the "status"
field, and a value of "holds" for the ''type'* field.

An instantiation of a production is a list of wme's such that each wme of the list is an
instantiation of the corresponding condition of the production, and all occurrences of each
variable throughout the conditions can be bound to the same value. A particular instantia-
tion of a production chosen to fire during conflict resolution is executed by performing each
of the actions of the production, after replacing any variables in the actions by the values
to which they were bound in the instantiation.

3 The Rete Algorithm

For 0PS5, there exists an efficient serial algorithm, known as the Rete algorithm [1], for
matching the conditions of the productions against working memory. The Rete algorithm
builds a network representing the productions, called the Rete network, which is similar
to a dataflow network. The Rete network takes advantage of two properties of production
systems which allow for efficient matching:

• The contents of the working memory change slowly.

• There are many sequences of tests that are common to the conditions of more than
one production.

The Rete algorithm exploits the first property by storing match information in the network
between cycles, so that it only matches a wme against each production condition once, even
if (as is likely) the wme remains in working memory for many cycles. Because of the storing
of match information in the network, only the changes to working memory, rather than the
whole contents of working memory, need be processed during each cycle. Each time a wme
is added to working memory, the wme is "filtered'' down the network, causing new partial
matches to be recognized and recorded in the network and possibly causing one or more
productions to be fully instantiated and placed in the conflict set. An identical process
occurs when a wme is removed from memory, except that partial matches are discarded as
the wme filters down the network. l

This description is not completely accurate if any productions contain negated conditions, which "suc-
ceed" only if they are not matched by any element in working memory. Such negated conditions merely add

working memory
changes

root node

test node

intra-condition
tests

(alpha branch)

A

inter-condltion
tests

conflict set

Figure 1: Structure of a Simple Rete Network

The Rete algorithm takes advantage of the second property by sharing common test and
memory nodes as it adds nodes to the network to represent the conditions of each successive
production. Because of the structure of the Rete network, the Rete algorithm can easily
determine, as it is adding nodes to the network to represent a particular production, whether
the nodes required already exist in the network and so can be reused.

Information flows among the nodes of the Rete network in the form of tokens, which are
ordered lists of wine's. A match to a list of conditions (e.g. the left side of a production)
is represented by a token in which the first wme matches the first condition, the second
wme matches the second condition, and so on. A token stored at a node in the network
represents a successful instantiation of the list of conditions represented by the set of nodes
leading into that node.

The structure of a simple Rete network is displayed in Figure 1. Each condition of a

to the complexity of the Rete algorithm, without having a significant effect on the possibilities of parallelism,
so we will not discuss them further.

production is represented in the Rete network by a singly-linked list of nodes, called an
alpha branch. These nodes, referred to as alpha nodes, execute the intra-condition tests,
those tests which concern only the wme that the condition is matching. For example, the
intra-condition tests of the third condition of the production above are (1) the class name
must be "goal'" and (2) the '-name" field must have the value "ladder'". Each alpha branch
is terminated by a memory node, called an alpha memory, in which is stored all tokens
representing wme's that have satisfied all the tests of the alpha branch. Each alpha branch
is linked to the root node of the network.

The two alpha branches representing the first two conditions of a production are joined
together by an and-node, which has the alpha memories of the two branches as "inputs". A
beta memory node is linked to the and-node as its output, storing any tokens which leave
the and-node. If there is a third condition in the production, the alpha memory representing
that condition is joined by another and-node to the beta memory representing the first two
conditions, and again a beta memory ^is linked as the output 'of the new and-node. Similarly,
the alpha memory of each successive condition of the production is joined by an and-node
to the beta memory representing all previous conditions. The memory node at the left
input of an and-node always represents the first n conditions of a production, while the
memory node at the right input represents the (n + l)st condition. If a token from the
left and right memories of an and-node have the same values for fields labeled by the same
variables in the production, then they can be concatenated to form a new token which
matches the first n + 1 conditions of the production. Hence, each and-node contains a list
of the inter-condition tests which insure that the token from the left memory is consistent
with the token from the right memory. A production node is linked to the final and-node
that represents all of the conditions of a production. Any token that filters down to a
production node represents a full instantiation of the corresponding production.

Whenever there is a change to working memory (either an addition or deletion of a
wme), a token representing that change is created and sent down the network, starting
at the root node. Any token reaching a memory node is stored in (or removed from) the
memory before being sent on. If a token reaches an and-node, then it is matched against
each token in the opposite memory of the and-node. If a token from the opposite memory
is consistent with the newly-arrived token, as determined by the inter-condition tests, then
the two tokens are combined, and the new token continues down the network. Whenever a
token reaches a production node, an entry indicating that the token is an instantiation of
the corresponding production is added to (or removed from) the conflict set. The processing
that occurs at any node of the network when a single token reaches one of its inputs is called
an activation of the node.

4 Qlisp

Qlisp is a parallel Lisp language proposed by Gabriel and McCarthy [3,4] based on a shared-
memory processing model. It is an attempt to add a minimal set of high-level parallel
constructs to Common Lisp in a consistent and useful way. The Qlisp constructs allow
the creation of independent processes that can evaluate Lisp forms concurrently. All such
processes have access to all data in memory. The 'CT in Qlisp comes from the fact that
all processes are assigned to processors by a run-time scheduler from a central queue (or

set of queues), so that Qlisp programs can run on any number of processors without being
rewritten or recompiled.

Goldman and Gabriel [5] describe an implementation of Qlisp on an Alliant FX/8 multi-
processor. This implementation includes the constructs originally proposed by Gabriel and
McCarthy, as well as a number of other primitives to aid in building parallel Lisp programs.
Additionally, Pehoushek [11] has implemented lower-cost versions of some of the basic con-
structs of Qlisp, which are useful in achieving better speedups in programs with finer-grain
parallelism. Below, we describe the constructs that were most useful in this work. (For
complete information on all Qlisp constructs, refer to Weening [12]).

In many of the constructs, a proposition is supplied as an argument which determines
whether the construct will execute serially or in parallel. It is intended that the programmer
can use the proposition to limit the creation of new processes at points in a computation
when a large number of processes already exist.

4.1 QLET

qlet is a version of the let construct which may execute the bindings in parallel. It has the
form:

(qlet prop {{var binding-form}*) {main-form}*)

That is, the qlet construct has the same form as the let construct, except for the addition
of the proposition. If the value of prop is nil, then the qlet behaves in exactly the same way-
as the corresponding let, binding each variable to the value of its corresponding form, and
then executing main-form in the environment with those new bindings. If prop evaluates
to neither nil nor the special value eager, then a process is spawned corresponding to
each variable, and each of the binding-forms are executed in parallel. When all of the
processes executing the binding-forms have completed, each variable is bound to the value
of the corresponding binding-form, and the main form is executed. Note that, in this case,
the qlet enforces an implicit synchronization point, since the parent process must wait
for the child processes to complete the evaluation of the binding-forms before continuing
execution. Finally, if the value of the proposition is eager, then processes are spawned to
evaluate each of the binding forms in parallel, but each of the variables is bound to a special
data value known as a future, and the main form begins executing immediately. The main
form executes in parallel with the evaluation of the binding forms, except that when, if ever,
it references the value of one of the variables bound to a future, it waits until the process
evaluating the "actual" value of the variable completes.

4.2 QLAMBDA

qlambda is a version of the lambda construct, which may cause execution of the lambda
body in another process. It has the form:

(qlambda prop (arg-list) body)

qlambda creates a closure which is a critical region: only one process may be executing
the closure at any given time. If prop evaluates to nil, then the closure is executed serially

by the process that calls it. However, the calling process will be suspended on a. queue
associated with the qlambda if there is already another process executing the closure.
Hence, a qlambda may be thought of as being implemented by a. sleep lock, a type of lock
which causes a process to be suspended (rather than just spinning) if it can not immediately
acquire the lock. If the value of prop is not nil (and not eager), then the qlambda creates
a separate process associated with the closure. A call to this process closure causes the
qlambda process to begin execution of the closure with the indicated arguments, and a
future to be returned immediately to the calling process. If the qlambda process is already
executing another call, then any further calls are added to a queue associated with the
process, to be executed one at a time in order. However, because futures are returned
to the calling processes, they need not wait on the qlambda process until they actually
require the values associated with the futures. A slightly different, but as yet unimplemented
behavior is defined if the value of prop is eager, but we shall not describe it here.

4.3 SPAWN

The spawn construct has the form

(spawn prop form)
(spawn (prop :for-effect t) form)

If the value of prop is nil. then spawn just evaluates form normally (in the current process).
If the value of prop is not nil, then a process is spawned to evaluate form and a future
representing that form is returned, so that the current process can continue executing in
parallel with the spawned process until it "needs" the value returned by form. If the future
representing the'spawned process is garbage-collected because there are no more references
to it, then the spawned process will be killed, since its return value is no longer needed. If
the form is being executed for side-effects rather than exclusively for its return value, then
the keyword :for-effect should be supplied, in order to indicate that the process should not
killed, even if its return value is ignored.

4.4 QWAIT

The qwait construct has the form

(qwait form)

qwait waits for all processes spawned during the evaluation of form, as well as all calls
to qlambda process closures, to complete before returning the value of form. It is useful
for waiting for the completion of processes which are running independently of their parent
processes, because they were spawned "for effect" or because the futures created when they
were spawned were never touched.

4.5 MAKE-LOCK, GET-LOCK and RELEASE-LOCK

The make-lock, get-lock, and release-lock constructs provide standard spin lock func-
tionality. They provide lower-cost alternatives to the locking provided by qlambda.

4.6 QLET&, SPAWN&, and QWAIT&

An extension to Qlisp provides low-cost variants of qlet, spawn, and qwait, called qlet&,
spawn&. and qwait&. These forms have much less overhead than the standard Qlisp
constructs in creating, scheduling, and waiting for processes, but have some restrictions
and slightly different behavior. Additionally, there is no eager version of qlet&.

The restrictions and the different behavior of the variants result from the different way
in which they create and represent processes. In the standard Qlisp implementation, when
a process must be created to evaluate a particular form F. a full closure (lambda () F)
over the form is created to represent the process. This closure can then be evaluated by the
processor that is eventually assigned the process. However. qlet& and spawn& represent
a process in a much cheaper way as a list which consists of a function to be called and the
value of each of the arguments with which it is to be called. 2 Since such a representation
cannot be used for a process which is to evaluate ä special form. qlet& and spawn&
require that F be a function call (fn f 1 f 2 ...), where fn is a function and f 1, f2. ...
are arbitrary forms. Specifically, all of the binding-forms of a qlet& expression must be
function calls, and. similarly, the form within a spawnfe must be a function call.

Additionally, this representation requires that the arguments f 1, f 2, ... to the function
call be evaluated before the process is created, so the arguments are evaluated by the
"parent" process (the process evaluating the qlet& or spawn&), rather than in the newly
created "child'' process. This change in the point at which the arguments are evaluated
could obviously greatly reduce the amount of parallelism obtained if much of the work of
the form f is in evaluating the arguments f 1, f2 However, typically such a problem
can be avoided by rewriting F as a a. call to an auxiliary function G that takes as arguments
just the free variables in the forms f 1, f2, ... and does the work of evaluating the forms
f 1, f2. ... and then calling fn on the results.

The fact that the arguments of the form F are evaluated in the parent process rather than
the child not only may change the degree of parallelism, but also can change the semantics
of the form. Because the standard versions of qlet and spawn create full closures for
processes, the child process shares with the parent process all lexical variables that it does
not rebind locally. Thus, when it references one of these lexical variables,, the child process
will see any changes that have been made to the variable by the parent process (or other
child processes) up to that point. However, the processes created by qlet& and spawn&
do not share lexical variables with the parent, since no closure is created and all of the
arguments in the form F are pre-evaluated in the parent process. Frequently, the latter
behavior is actually the one that is more desirable. For example, the expression:

(dotimes (i 100) (spawnfe (do-task i)))

evaluates the forms (do-task 1), (do-task 2), ..., (do-task 100) in parallel, as might
be expected. However, if spawn& is replaced by spawn, then the above expression behaves
unpredictably, because the hundred processes created all share the lexical variable i. In
the worst case, if the parent process completes all the iterations of the loop before any of
the child processes run, then each child process will execute (do-task 100), because i will

2 Also included in the representation of a process is a pointer to the special variable environment in which
the process is created.

have the value 100 when they finally run. For the processes to behave as intended, each
must be given a private copy of the index variable i. as follows:

(dotimes (i 100)
(let ((il i)) (spawn (do-task il))))

5 Parallelism in the Rete Algorithm

Gupta [6] describes several types of parallelism that might be exploited in speeding up the
conflict resolution and action phases of a rule system. However, as might be expected,
the time spent in the matching phase usually greatly dominates the processing time of a
production system. Hence, in this work, we only investigate parallelizing the match phase
of a production system. In this section, we describe several levels of parallelism in the
Rete algorithm, give some examples of how the Qlisp constructs can be used to parallelize
the algorithm, and then summarize some of the interesting aspects of the parallel Rete
algorithm.

5.1 Levels of Parallelism in the Rete Algorithm

As described above, in the Rete algorithm, each change to working memory causes a flow of
tokens throughout the Rete network, representing changes in partial matches of productions
caused by that particular change to working memory. At some of the nodes 'of the network,
there will be much activity, as many tokens are generated and sent on due to a single change
to working memory, whereas at other nodes there will be no work, because no new tokens
reach them. As identified by Gupta [6], there are several levels of potential parallelism in
this filtering process of the Rete algorithm. These are:

• rule-level parallelism - doing the work for the parts of the network representing dif-
ferent rules in parallel.

• node-level parallelism - doing the work at the individual and-nodes in parallel.

• intra-node parallelism - doing the work of each activation of each and-node in parallel.

The types of parallelism above are listed in order of decreasing task granularity. As usual,
there is a tradeoff between the greater possible parallelism achievable with smaller task
granularity vs. the increased scheduling overhead and contention.

Additionally, we can introduce further parallelism into each of these schemes via change
or action parallelism, in which the filtering process is done for many changes to working
memory in parallel. All of the changes resulting from the firing of a production in the
execution phase of one cycle can be processed in parallel during the match phase of the
next cycle. We can expose even more parallelism if we allow the action and match phases
to overlap somewhat, by beginning the filtering process for a change to working memory
as soon as the change is generated by an action. The only requirement for correctness (as
with all types of parallelism mentioned so far) is that, on each cycle, all processes involved
in the matching phase complete before the succeeding conflict resolution phase commences.

5.2 Details of Parallelizing the Rete Algorithm in Qlisp

We have implemented and investigated all three levels of parallelism described above, both
alone and in conjunction with change parallelism. Below, we give some details and some
specific examples of parallelizing the Rete algorithm in Qlisp. For full details on imple-
menting intra-node parallelism, the level which gives the best speedup, refer to Gupta et
al. [7].

The basic parallelism of the algorithm comes from the structure of the network. The root
node of the network, at which all changes to working memory start, has many outputs, one
for each distinct condition that any change to working memory must be matched against.
Additionally, due to the similarity of many of the conditions of different rules, many other
nodes in the network are shared between several conditions and/or rules and so have multiple
outputs. Parallelism is created by spawning a different process to handle the flow of a token
to each one of the outputs of a node. In Qlisp, this procedure might be coded as:

(defun send-to-outputs (token outputs)

(qlet t ((x (eval-node token (car outputs)))

(y (send-to-outputs (cdr outputs))))))

or

(defun send-to-outputs (token nodelist)
(dolist (node nodelist)

(let ((n node))
(spawn (t :for-effect t) (eval-node token n)))))

In the first example, we have used a recursive qlet construction (with no actual body) to
create a variable number of processes, each of which sends token to a different output.
Depending on the Qlisp implementation, this construction might be quite inefficient, since
it creates twice as many processes as there are outputs, with half the processes doing real
work and half the processes (the ones that execute the qlet) merely waiting for their child
processes to complete.

In the second example, we have used spawn to create exactly as many processes as
are needed. We have created the processes with the :for-effect keyword, since they are
executed for effect and should not be garbage-collected, even though the futures they return
are ignored, Most often, such spawns should be executed within the dynamic scope of a
qwait call, which establishes a barrier requiring that all processes created within the qwait
call complete before the qwait call returns. Since all of the processes spawned in the Rete
algorithm are independent, only a single qwait call is needed "at the top". If the qwait
is placed around the function that does the match for a single wme, then all processing
associated with each change to working memory will be done in parallel. If, however, the
qwait is placed around a "higher-up" function that does the match for all working memory
changes in each cycle, then all processing in the network associated with all the working
memory changes of a single cycle will occur in parallel, thus producing the change parallelism
described above.

Though fewer processes are created in the spawn construction above than in the qlet
construction, it is still possible that the qlet expression is cheaper, if creating a process via

10

a (non-eager) qlet is quite a bit less expensive than creating one via spawn. This is quite
possible, depending on the implementation, since a. spawned process must be completely
independent (in terms of stack, control structures, etc.) of the process that created it. In
contrast, much of the information about a process created by a (non-eager) qlet can be
maintained by the parent process (perhaps on its stack), since the parent process must wait
for the child process to complete.

qlet& and spawn& exhibit just such a cost tradeoff: the parallelism created by the
spawn& construct is more flexible than the parallelism of the qlet& construct, but creating
a process via qlet& is significantly cheaper than creating one via spawn&. Also. qlet&
adds the extra efficiency of having the parent process itself execute one of the binding
forms, thus entirely avoiding the creation of any extra processes. (This is similar to the
way that an expression like (+ (future A) (future B)) in Multilisp can be optimized
to (+ (future A) B), given a left-to-right evaluation of arguments [8].) Because of this
tradeoff, it is sometimes not obvious whether to use spawn& or qlet& when creating
processes.

Another important source of parallelism in node and intra-node parallelism occurs at the
and-nodes. In contrast to the alpha nodes, the processing resulting from a single activation
of an and-node can result in the output of several tokens, since the incoming token may
cause the partial production represented by the and-node to match in several different
ways. Hence, another source of parallelism may be exploited by processing the multiple
tokens produced by a single activation of an and-node in parallel. The Qlisp construction
to implement this parallelism looks something like this:

(defun and-node-left-activation (left-token binding-tests right-memory outputs)

(dolist (right-token right-memory)
(if (bindings-match left-token right-token binding-tests)

(spawn t
(send-to-outputs (concatenate left-token right-token) outputs))))

Here, an activation resulting from a token coming to the left input of an and-node is handled
by matching the incoming token with each token in the right memory, and for each match,
spawning a process which sends the concatenation of the two matching tokens to each of
the outputs of the and-node. Note that here there is no corresponding qlet expression
that could achieve the same effect of conditionally spawning off independent processes at
varying intervals during a computation. Note also that, depending on the type of locking
done by the and-node activation (as discussed below), this implementation may result in
deadlock if run in serial mode (in which the spawn call does not create a new process),
since the and-node activation may hold some lock that will be required by a later and-node
activation caused by one of the tokens that is sent out. An alternate implementation that
does not have this deadlock problem in serial mode is to collect all the tokens to be sent
out and release any locks being held before sending out any tokens. Obviously, however,
such an implementation reduces the amount of parallelism.

With all these processes filtering tokens through the network, it is, of course, a require-

11

ment to lock the shared data that may be accessed by the processes: the memories of the
memory nodes and the conflict set. Both of these shared data structures can be '"protected"
by encapsulating the code that manipulates them in qlambda closures. As stated above.
qlamb da closures are critical regions which execute calls by processes serially, either within
the calling process or in a separate process. For rule parallelism, there should be a separate
qlambda closure for each group of memory nodes representing a single production. For
node parallelism, there should be a separate qlambda closure for each and-node and the
two memory nodes at its inputs. For intra-node parallelism, locking is even finer - through
the use of a global bucket hash table to store the contents of the memory nodes - in order
to allow several activations of a single and-node to run concurrently. In this case, there
should be one qlambda closure per bucket of the hash table. Additionally, for all three
levels of parallelism, there should be a single qlambda process for accessing the conflict set
atomically. For more details on implementing the necessary locking for each level in Qlisp,
refer to Okuno and Gupta [10].

Typically, in the Rete algorithm, one would most often want to use parallel qlambda
closures, in order to allow the calling process to proceed immediately without waiting on
a lock. However, a parallel qlambda has costs in terms of communication and context
switching between the calling process and the process attached to the qlambda closure. If
it expected that, most often, the wait for a lock on a shared data structure will be minimal,
then it may be cheaper to achieve the locking required via the use of spin locks rather than
calls to qlambda closures.

5.3 Properties of the Parallel Rete Algorithm

By way of a summary, we here list some of the characteristics of the Rete algorithm that
distinguish it from many of the small, functional programs that are often used as test cases
for parallel Lisps:

• When run in parallel, the algorithm requires extensive use of locks at nodes in the
network that store state information. Hence, processes may not always be able to run
to completion once they have started (if sleep locks are used) or may spend some of
their processing time spinning (if spin locks are used).

• Although a correctly-implemented parallel version of the Rete algorithm will yield
the same overall result for a particular set of working memory changes as the serial
version, it will not necessarily process the same number of node activations, since the
actual work done in the network depends on the order in which tokens are sent down
the network.

• The algorithm is highly non-functional: most functions do not return values explicitly,
but instead modify global variables and/or information stored in the network. Hence,
with the proper locking, most processes that are spawned can run independently, with
just a single synchronization point at the end of the matching phase of each cycle.

• The algorithm provides ample opportunities for parallelism, but the degree of paral-
lelism at different points in the run and the size of the tasks created varies widely

12

and unpredictably. Because of this variability, it is necessary to spawn processes at a
fairly fine-grained level in order to achieve a reasonable speedup.

6 Results and Analysis

In Table 1, we give the timings results for our best parallel implementation of the Rete
algorithm in Qlisp, which includes a combination of intra-node and change parallelism.
Our implementation of intra-node parallelism was clearly faster than our implementations
of rule- and node-level parallelism, as was expected, given the smaller grain size of its
tasks. However, because of the small size of the tasks created at the level of intra-node
parallelism, the use of the low-cost primitives qlet& and spawn& was crucial in keeping
the overhead low enough to get reasonable speedups. The best times resulted from the
use of qlet& to create parallelism at the outputs of the root and alpha test nodes and the
use of spawn& to create the parallelism at the outputs of the and-nodes. as described in
Section 5.2. Additionally, we used spins locks throughout rather than qlambda, which is
quite expensive and has no low-cost equivalent. At all three levels of parallelism, the use
of change parallelism improved performance significantly. The fact that change parallelism
is clearly beneficial at all levels probably results from the fact that the individual changes
to working memory made during a cycle of the production system often affect different
productions and different nodes in the network, so they can be processed in parallel with
little contention.

We began with the standard Common Lisp implementation of 0PS5, but, before at-
tempting to parallelize it. made a number of changes to the lowest-level functions involved
in matching, in order to eliminate a number of inefficiencies. We also included type decla-
rations in some of these functions in order to speed them up further. Additionally, in all
implementations, both serial and parallel, we used the highest level of optimization of the
Qlisp compiler (which is based on the Lucid Common Lisp compiler).

We also changed the implementation of the conflict set from a linked list to a hash table
in the serial and parallel implementations. Several of the 0PS5 programs that were used
for timings typically cause runs in which the average size of the conflict set is very large.
Hence, to reduce the total time adding and deleting instantiations from the conflict set
(all of which must be serialized via a lock), the conflict set was converted to a hash table.
This change does not measurably increase or decrease the times of those runs in which the
average conflict set size is small.

All times are user CPU time in milliseconds and were obtained for an implementation of
Qlisp on an eight-processor Alliant FX/8. The Affiant FX/8 is a shared-memory multipro-
cessor in which all of the^processors are connected to a common global memory via a shared
cache. The individual processors of the Alliant run at about three MIPS, though, some
appear to run slightly slower when they are running in parallel mode, so the best speedup
that can be obtained for 8 processors is about 7.8. Since the current implementation of
Qlisp does not have a parallel garbage collector, all times are for runs in which there was
no garbage collection.

For the timings, we use four 0PS5 programs (rule sets) also used in [7] and [9]. They
are:

13

program
no. of
rules

no. of
cycles

RHS
actions

average
CS size

serial
time

parallel
1 procr

time
8 procr

speedup
"true" "nom.''

Rubik 70 50 1166 2 30937 38355 7138 4.33 5.37
Weaver 637 150 469 8 12148 33431 7344 1.65 4.55
Tourney 17 30 81 625 15675 11550 4866 3.22 2.37
Tourney* 17 30 81 625 14263 10138 3454 4.13 2.94
Waltz 33 535 2086 95 108977 74127 23431 4.65 3.16
Waltz* 33 535 2086 95 103876 69026 18330 5.66 3.77

*times excluding the serial conflict resolution phase

Table 1: Times (in ms) for the runs of four OPS5 programs

• Rubik, a program that models manipulations of a R.ubik's cube

• Weaver, a VLSI routing program

• Tourney, a program that makes schedules for a tournament

• Waltz, a program that interprets three-dimensional line drawings

The first column of Table 1 gives the number of rules in each program. The second and
third columns gives the number of cycles (rule firings) and the number of actions (additions
and deletions to working memory) in the runs timed for each program, while the fourth
column gives the average size of the conflict set over all cycles. The fifth column gives the
time for the run of a rule set on the optimized serial implementation of OPS5. The sixth
and seventh columns give the times for the run on the parallel implementation of OPS5
running on one or eight processors, respectively. For the Tourney and Waltz rule sets,
the time for conflict resolution (which runs completely serially in our implementation) is
such a significant part of the run time (about 1400 ms and 5100 ms respectively) that we
include entries showing the results when the time for conflict resolution is excluded. For the
other two rule sets, the time spent in the conflict resolution phase is basically insignificant
(approximately 300ms and 350ms, respectively, for Rubik and Weaver).

The "true" speedup is the ratio of the time for the serial implementation to the time
for the parallel implementation on eight processors. The '"nominaT speedup is the ratio of
the times of the parallel implementation on one and eight processors. The differences in the
performance for each rule set of the serial implementation and the parallel implementation
on one processor result mainly from two factors:

• Changes to the network required for the parallel implementation that decrease sharing
and so increase the number of nodes in the network.

• Speedup in the access to tokens in the memories of memory nodes because of the use
of hash tables in the implementation of intra-node parallelism.

The first item is quite significant and is the principal reason why Weaver runs nearly
three times slower under the parallel implementation on one processor than under the serial
implementation. The slow-down comes mainly from the fact that the implementation of

14

program
par.

time

idle

time

spin

time

no. of

qletfc

procs.

spawn

average

activ. time
Rubik 7138 1232 279 78926 7399 0.265
Weaver 7344 1402 480 62166 3078 0.390
Tourney 4866 2038 1145 1075 3195 6.634
Waltz 23431 8655 3033 87644 6949 0.954

Table 2: Statistics for parallel runs of four- OPS5 programs

intra-node parallelism does not allow, in most cases, the sharing of memory nodes Thus, if
an alpha memory is shared in the serial implementation by three rules (because all three
rules contain an identical condition), then in the parallel implementation, that memory
node must be duplicated three times, and the work that had been done by that one node is
duplicated at each of the two extra nodes. This effect can become huge if many conditions
and sequences of conditions are shared among rules. Note, however, that any extra work
created because of the loss of sharing can probably run in parallel with the original work
with little contention, since the extra work occurs at new nodes that didn't exist in the
serial network. Hence, the effects of loss of sharing can be mitigated somewhat by applying
more processors to the matching, if they are available.

The second factor is the reason that Tourney and Waltz actually ran faster on the
parallel implementation than on the serial implementation. As mentioned above, part of the
modifications required to implement intra-node parallelism involve changing the memories
at the memory nodes from simple lists to hash tables - thereby changing the granularity of
locks that must be acquired to modify the contents of a memory node from the level of the
entire memory list to the level of a single bucket of a hash table. If. for a particular run
of a set of rules, the number of tokens at various memory nodes becomes very large, then
the processing of the memory nodes may be significantly faster when hash tables are used.
Such is the case with the Tourney and Waltz programs. However, as indicated above, the
use of hash tables at the memory nodes contributes to the loss of sharing and so does not
always improve performance (as with the Weaver program).

Table 2 gives further statistics on the eight-processor parallel runs of the four OPS5
programs. The first column repeats the figures given in Table 1 for the running time on 8
processors. The second column gives the average idle time per processor during the run.
This figure is the time that a processor is idle because no process is available to execute;
it does not include the time spent spinning on locks in order to access token memories or
the conflict set, which is the value given in the third column. The fourth and fifth columns
give the number of processes created via qlet& and spawn& respectively. The last column
indicates the average time for the processing of an and-node activation (in milliseconds) for
each of the programs. This last figure gives an indication of the grain-size of the processes
created. (However, these figures do not give the whole picture, since they do not average
in the times for the processes that handle the tests on the alpha branches.) Obviously,
the average activation time for the Tourney program is huge; such huge times ca.use load-
balancing problems and increase the contention for locks associated with the memories of
the and-nodes.

For purposes of comparison, it is interesting to note the approximate times required for

15

operation time

setq. car. cdr lfiS

get-lock 3/JS

cons D/J.S

function call 9 - 12/is
creating a closure ÖÖ/JS

creating a process via qlet& 23fjs
transferring a process ZOfis
suspending a process ZO/is
creating a process via spawn& lOOfJLS

Table 3: Times for some Qlisp operations on the Affiant FX/8

various operations in Qlisp on the Affiant, as given in Table 3. The figure for cons does
not include any garbage-collection overhead that may be associated with the cons. The
last four entries describe the overheads associated with the low-cost versions of the Qlisp
constructs. The entry "transferring a process'* gives the time involved in transferring a
process from the processor on which it was created to another processor which is looking
for work. The entry '"suspending a process'' is overhead involved in suspending a process
because it must wait at a qwait& or for a sleep lock to be released or for the child processes
of a, qlet& to complete. The overhead in creating a process via spawn& is higher than the
overhead in creating a process via qlet&. because more information must be maintained
and many process structures must heap-allocated in order to allow a spawned process to
run independently of its parent process.

We may summarize the results of the four different programs as follows:

• Rubik gave the best nominal speedups of the four rule sets. Not only do runs of this
rule set have a good degree of parallelism, but the parallelism that is exploited does
not generate much contention for memory node locks. Although many of the parallel
tasks generated by a run of this rule set are quite small, as evidenced by the figure
of 265 microseconds in Table 2 for the average time for an activation of an and-node,
the spawn& and qlet& constructs are cheap enough that good speedup can still be
achieved.

• Weaver achieves a rather poor '"true" speedup. However, the nominal speedup is
quite good, indicating that the poor speed is due to loss of sharing, rather than lack
of parallelism or contention on locks. Because much of the processing power of the
eight processors is used just in making up for the loss of sharing, it is not possible to
tell the extent of the real parallelism in the rule set without using more processors.

• Tourney and Waltz show reasonably good "true'* speedup, which is somewhat mis-
leading, since much of the true speedup of the Tourney and Waltz programs results
from the change of node memories from linked lists to hash tables, rather than from
parallelism. In terms of parallelism, what is more important is their nominal speedup,
which is rather poor. As explained in [7], the poor performance of Tourney is due

16

to the fact that the structure of the small number of rules is such that a combina-
torial number of partial matches to many of the rules is generated during the run.
This causes large numbers of tokens to be stored in some of the memory nodes, and
consequently, the average time to process memory node and and-node activations to
become very large (as indicated by the huge figure in the '"average activation time"
column of Table 2). The increased processing time for node activations increases lock
contention (the uspin time") and limits the degree of parallelism. Waltz appears to
suffer from a similar problem, though to a much lesser extent, as evidenced by the
large average conflict set size, large average activation time for and-nodes, and the
large spin time per processor (as a percentage of the total run time).

7 Comments on Qlisp

In general, we found the Qlisp parallel constructs both reasonable and useful. Their sim-
ilarity to existing Lisp constructs made them easy to remember, and their behavior and
interaction with other parallel constructs was fairly easy to understand. In addition, par-
allelism was easy to add and remove in a Qlisp program, either by explicitly adding or
removing a Qlisp construct (e.g. a spawn surrounding a particular form) or by changing
the proposition associated with a Qlisp construct. This property of Qlisp facilitated experi-
mentation with different kinds of parallelism. On the other hand, because the current Qlisp
environment provides no tools to help the user in determining where to introduce paral-
lelism in his program, the user may in fact have to do much experimentation to determine
what combination of parallelism gives the best results.

The very different behavior of the non-eager qlet and spawn may cause some confusion.
Whereas spawn either uses futures for synchronization or implies no synchronization at all
(when specified as "for effect"), a non-eager qlet synchronizes via a barrier that requires
that all child processes be completely finished before the parent process continues. Such
difference in behavior means that the non-eager qlet and spawn are often best used in quite
different circumstances, even though they are both constructs for creating parallelism.

spawn and qwait were quite useful in parallelizing the Rete algorithm, because of the
non-functional and independent nature of the tasks created by the parallel versions of the
algorithm, spawn was especially crucial to avoid the overhead of the many extra unneeded
synchronization points that would result if qlet were used instead. In addition, spawn was
useful at points in the algorithm where the number of tasks to be created was not fixed. As
illustrated in Section 5.2 above, creating a variable number of tasks via spawn is straight-
forward, but, if qlet is used, requires defining a recursive function. Also, if the variable
number of tasks are created over a period of time (as in and-node-left-activation in
Section 5.2), then a qlet is unusable unless the potential tasks are collected and spawned all
at once (which, of course, results in a loss of some of the parallelism). The qwait construct
made it quite convenient to use spawn freely; any less flexible construct that required the
programmer to keep track of exactly which processes or how many processes were to be
waited on would make spawn much less useful.

qlambda mapped naturally to the locking needed in several parts of the algorithm,
though spin locks were eventually used instead, because they have lower overhead. For
completeness, it might be reasonable to add to Qlisp a version of qlambda based on spin

17

locks.
One big problem with the current implementation is the lack of good performance moni-

toring tools. Common Lisp itself defines no tools other than the time construct for profiling
the execution of a serial program, and Qlisp provides no additional tools for monitoring the
execution of parallel programs. Additionally, on the AUiant FX/8, the only time that can
be obtained with a low enough overhead to be useful in timing operations at the level of
node activations is wall-clock time. Given the existence of other users and system processes
on the machine, wall-clock time is obviously not sufficient for getting highly accurate tim-
ings. Hence, it is quite difficult to get an accurate profile of the timing characteristics of the
parallel 0PS5 algorithm running under Qlisp and so to determine where the bottlenecks
are.

8 Conclusion

We may briefly summarize some conclusions from this work as follows:

• Qlisp is a useful extension to Common Lisp for parallelizing the expensive parts of
computation-intensive Lisp programs. In our case, it was easy to parallelize the expen-
sive matching phase of the 0PS5 interpreter, while leaving untouched the remaining
code that handles the building of the Rete network and the processing required for
other two phases of the execution cycle.

• The basic Qlisp constructs are simple to understand, but powerful enough that it is
easy to experiment with different kinds of parallelism.

• qwait and spawn are especially useful for programs which are highly side-effecting
and whose opportunities for parallelism vary greatly at runtime, both of which are
true of the OPS5 implementation of the Rete algorithm. In contrast, Qlisp's qlet
construct is often sufficient and more efficient than spawn in many cases in which
parallelism is more regular. We needed spawn to express parallelism at the and-
nodes, but qlet was adequate and cheaper for expressing parallelism at the outputs
of the alpha test nodes

• The standard Qlisp constructs (in the current implementation) have a fair amount of
overhead and are intended to be used in implementing programs with medium-grained
parallelism. However, the low-cost variants to the basic Qlisp constructs are cheap
enough that programs with finer-grained parallelism can achieve reasonable speedups.
This result is significant, since many of the symbolic applications for which Lisp is
typically used have an irregular enough execution behavior that parallelism can only
be exploited effectively at the fine-grain level.

• In particular, using the low-cost variants, we were able to obtain moderate speedups
for runs of the parallel Rete algorithm on several different rule sets.

9 Future Work

There is a variety of work that can still be done:

18

• Investigate other 0PS5 programs, in order to determine whether most programs yield
good speedups, as with the Rubik program, or exhibit poor speedup, because of some
of the problems described above in association with the Weaver and Tourney rule
sets.

• Investigate the use of dynamic spawning [11], in which the proposition associated
with most Qlisp constructs is used to limit the number of processes being created.
We did not use the proposition for dynamic spawning, because it was not obvious
how to determine how much work a particular task that might be spawned as a
separate process will entail. Some limited tests in which spawning was controlled by
the current size of each processor's task queue either increased or did not significantly
change overall run times. Dynamic spawning may not be particularly relevant for the
parallelized Rete algorithm, since the amount of usable parallelism is already highly
limited by the variability of task sizes and by contention for locks.

• Investigate how easy it is to express in Qlisp the parallelism in the conflict resolution
and action phases of 0PS5.

• Investigate parallelizing other matching algorithms proposed for 0PS5, such as the
Treat algorithm [9], in Qlisp.

10 Acknowledgments

Thanks go to Joe Weening and Dan Pehoushek for comments on drafts of this paper.
Thanks also to Dan Pehoushek for his willingness to extend the low-cost primitives to
meet my needs in parallelizing the Rete algorithm and for his help and advice in using the
primitives. This work was supported in part by the Defense Advanced Research Projects
Agency under contract N00039-84-C-02111.

19

References

1. Forgy, C.L. On the Efficient Implementation of Production Systems. Ph.D. Thesis,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, 1979.

2. Forgy, C.L. 0PS5 Users Manual. Technical Report CMU-CS-81-135, Department of
Computer Science, Carnegie-Mellon university, Pittsburgh, July, 1981.

3. Gabriel, R.P. and McCarthy, J. "Queue-based Multiprocessor Lisp,,; Conference Record
of the 1984 ACM Symposium on Lisp and Functional Programming, ACM, Austin,
Texas, August, 1984.

4. Gabriel, R.P. and McCarthy, J. "Qlisp," Parallel Computation and Computers for
Artificial Intelligence, edited by Janusz S. Kowalik, Kluwer Academic Publishers,
Boston, Massachusetts. 1988.

5. Goldman, R. and Gabriel, R.P. "Qlisp: Parallel Processing in Lisp," Proceedings of
HICSS-22, Hawaii International Conference on System Sciences, January, 1989.

6. Gupta, A. Parallelism in Production Systems. Ph.D. thesis, Technical Report CMU-
CS-86-122, Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
March, 1986.

7. Gupta, A., et. al. "Parallel Implementation of 0PS5 on the Encore Multiprocessor:
Results and Analysis," International Journal of Parallel Programming, Vol. 17, No.
2, April, 1988.

8. Halstead, R.H., Jr. "An Assessment of Multilisp: Lessons from Experience,'" Inter-
national Journal of Parallel Programming, Vol. 15, No. 6, December, 1986.

9. Miranker, D.P. TREAT: A New and Efficient Match Algorithm for AI Production
Systems. Pitman/Morgan Kaufmann, 1989.

10. Okuno, H. and Gupta, A. Parallel Execution of OPS5 in QLISP, Technical Report
STAN-CS-87-1166, Department of Computer Science, Stanford university, Stanford,
June, 1987.

11. Pehoushek, J.D. and Weening, J.S. "Low-cost Process Creation and Dynamic Par-
titioning in Qlisp." Proceedings of the 1989 US/Japan Workshop on Parallel Lisp.
Springer-Verlag (to appear in 1990).

12. Weening, J.S. Qlisp Reference Manual. In preparation.

20

o
s-
u

+* s

eg--

i £-

■a

Li

a;

ft w
«£

E

° = r a>

■§ =«=
CO a3 «8 es

Z^.S.S

Reproduced by NTIS
National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

This report was printed specifically for your
order from our collection of more than 2 million
technical reports.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Your copy is the best possible reproduction available from
our master archive. If you have any questions concerning this document
or any order you placed with NTIS, please call our Customer Services
Department at (703) 387-4660.

Always think of NTIS when you want:
• Access to the technical, scientific, and engineering results generated
by the ongoing multibillion dollar R&D program of the U.S. Government.
• R&D results from Japan, West Germany, Great Britain, and some 20
other countries, most of it reported in English.

NTIS also operates two centers that can provide you with valuable
information:
• The Federal Computer Products Center - offers software and
datafiles produced by Federal agencies.
• The Center for the Utilization of Federal Technology - gives you
access to the best of Federal technologies and laboratory resources.

For more information about NTIS, send for our FREE NTIS Products
and Services Catalog which describes how you can access this U.S. and

foreign Government technology. Call (703) 487-4650 or send this
sheet to NTIS, U.S. Department of Commerce, Springfield, VA 22161.
Ask for catalog, PR-827.

Name
Address

Telephone,

Your Source to U.S. and Foreign Government
Research and Technology

